Kinetic Microscale Thermophoresis for Simultaneous Measurement of Binding Affinity and Kinetics
J.A.C. Stein et.al. 2021 Angew.Chem.Int.Ed. https://doi.org/10.1002/anie.202101261
01.04.2021
Julian A. C. Stein, Alan Ianeselli, and Dieter Braun
Angew.Chem.Int.Ed. https://doi.org/10.1002/anie.202101261
Abstract
Microscale thermophoresis (MST) is a versatile technique to measure binding affinities of binder‐ligand systems, based on the directional movement of molecules in a temperature gradient. In this study, we extended MST to measure binding kinetics as well as binding affinity in a single experiment by increasing the thermal dissipation of the sample. The kinetic relaxation fingerprints were derived from the fluorescence changes during thermodynamic re‐equilibration of the sample after local heating. Using this method, we measured DNA hybridization on‐rates and off‐rates in the range 104 ‐106 M‐1 s‐1 and 10‐4 ‐10‐1 s‑1 , respectively. We observed the expected exponential dependence of the DNA hybridization off‐rates on salt concentration, strand length and inverse temperature. The measured on‐rates showed a linear dependence on salt concentration and weak dependence on strand length and temperature. For biomolecular interactions with large enthalpic contributions, the kinetic MST technique offers a robust, cost‐effective and immobilization‐free determination of kinetic rates and binding affinity simultaneously, even in crowded solutions.