CRC 235 Emergence of Life
print


Breadcrumb Navigation


Content

Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells

A. Ianeselli et.al. 2021 Nat Chem https://doi.org/10.1038/s41557-021-00830-y

25.11.2021

Alan Ianeselli, Damla Tetiker, Julian Stein, Alexandra Kühnlein, Christof B. Mast, Dieter Braun, and T.-Y. Dora Tang

Nature Chemistry https://doi.org/10.1038/s41557-021-00830-y

Abstract

Key requirements for the first cells on Earth include the ability to compartmentalize and evolve. Compartmentalization spatially localizes biomolecules from a dilute pool and an evolving cell, which, as it grows and divides, permits mixing and propagation of information to daughter cells. Complex coacervate microdroplets are excellent candidates as primordial cells with the ability to partition and concentrate molecules into their core and support primitive and complex biochemical reactions. However, the evolution of coacervate protocells by fusion, growth and fission has not yet been demonstrated. In this work, a primordial environment initiated the evolution of coacervate-based protocells. Gas bubbles inside heated rock pores perturb the coacervate protocell distribution and drive the growth, fusion, division and selection of coacervate microdroplets. Our findings provide a compelling scenario for the evolution of membrane-free coacervate microdroplets on the early Earth, induced by common gas bubbles within heated rock pores.